Eleven Teams to Compete in NASA's 2013 Sample Return Robot Challenge

Eleven teams from across the country and around the globe are preparing to compete for $1.5 million during NASA's 2013 Sample Return Robot Challenge, June 5-7 at the Worcester Polytechnic Institute (WPI) in Worcester, Mass.

Teams will demonstrate a robot that can locate and collect geologic samples from a wide and varied terrain, operating without human control. The objective of this NASA-WPI Centennial Challenge is to encourage innovations in autonomous navigation and robotics technologies. Innovations stemming from the challenge could improve NASA's capability to explore a variety of destinations in space, as well as enhance the nation's robotic technology for use in industries and applications on Earth.


"Anticipation is high for a successful sample collection this year," said Sam Ortega, program manager of Centennial Challenges, which is managed by NASA's Marshall Space Flight Center in Huntsville, Ala. "Last year, teams were finding their footing and tweaking their designs. This year, we have several teams that know what they're up against, and they can't wait to get back on the field. We have a lot of new competitors signed up. Improving this technology will be a huge boon, not just to NASA and space exploration, but also for countless applications here on Earth."

There will be two levels of competition. For a robot to complete Level 1 successfully, it must leave from a starting platform in search of a sample that has been previously identified in the robot's onboard computer. The robot must then autonomously return one undamaged sample to its starting platform within a 30-minute time limit. Only teams that complete Level 1 will be allowed to compete in Level 2.

To complete Level 2 successfully, a robot must autonomously return at least two undamaged samples, including the pre-cached sample, to its starting platform within a two-hour time limit.

Samples are categorized as easy, intermediate and hard based on the complexity of their shape, size and design, with higher point values given for samples classified as hard. Samples range in shape and size from rectangular (like a shoe box) or round (like a tennis ball). Prize awards will range from $100,000 to $1.5 million depending on the amount of points scored.

This is the second Sample Robot Return competition. During last year's competition, also at WPI, 11 teams registered to compete and the field narrowed to six as the competition approached. After robot inspections, only one team met the contest's rigorous requirements. That robot competed in Level 1, but failed to collect the required samples in the allotted time, so no prize money was awarded.

The Centennial Challenges program does not award funds to competitors unless the challenge objectives have been met. This assures desired results are gained before government funds are paid.

Returning teams this year include SpacePRIDE of Graniteville, S.C.; Survey of Los Angeles; Wunderkammer of Topanga, Calif.; Intrepid of Lynnwood, Wash.; and the University of Waterloo in Ontario, Canada. New teams entering the competition are Fetch of Alexandria, Va.; Middleman of Dunedin, Fla.; Mystic Late Robots of The Woodlands, Texas; Team AERO of Worcester, Mass.; the Autonomous Rover Team of the University of California at Santa Cruz; and Kuukuglur of Estonia.

The challenge begins on the WPI campus Wednesday, June 5, with awards expected on Saturday, June 8, if competition objectives are met. The awards ceremony will take place during the day-long TouchTomorrow technology festival hosted by WPI. The festival will showcase the teams and robots as well as NASA and WPI exhibits in science, robotics and space technology. The TouchTomorrow festival is open to the public.

Journalists who want to cover the sample return robot competition should contact Janet Anderson of NASA Communications at 256-544-0034 or by email at janet.l.anderson@nasa.gov for a schedule of activities and media credentials.

Featured Product

Piab’s Kenos KCS Gripper

Piab's Kenos KCS Gripper

Piab's Kenos KCS gripper enables a collaborative robot to handle just about anything at any time. Combining Piab's proprietary air-driven COAX vacuum technology with an easily replaceable technical foam that molds itself around any surface or shape, the gripper can be used to safely grip, lift and handle any object. Standard interface (ISO) adapters enable the whole unit to be attached to any cobot type on the market with a body made in a lightweight 3D printed material. Approved by Universal Robots as a UR+ end effector.