IPR Develops World First: 7th Axis Made of Concrete Instead of Metal
The new concrete 7th axis is inexpensive and sustainable and minimizes vibrations.
The new concrete 7th axis is inexpensive and sustainable and minimizes vibrations.
IPR has developed a new robotic 7th axis that has its entire structure made of concrete instead of the conventional steel or aluminum. This reduces the costs of production and also has a positive impact on quality and the environment. Concrete in contrast to metal leaves a much smaller CO2 footprint and reduces vibrations and oscillations in the component. Another advantage offered by concrete is its torsional rigidity, this means the dynamic movements of a robot leads to a reduced flexing in the 7th axis.
However, there are also steel components in the new 7th axis. An example of this is the guide rails that ensure a high level of repeatability and positioning accuracy through thanks to their special hardening and finish.
IPR — manufacturer of grippers, tool changers, joining and compensation modules, rotation modules for collision protection and 7th axes made of aluminum and steel — has developed a completely new category in this product segment with its concrete 7th axis. Initially, the new 7th axis will be available with payloads of 600 kg, 800 kg and 1600 kg. A patent application for the new concrete 7th axis is submitted.
Featured Product

FAULHABER MICROMO - Game changer in logistics
Faster, more efficient, more sustainable - due to global competition in industry combined with booming online trade, transport structures in intralogistics are facing new challenges. The industries' answer: Automation. From storage to shipping, key work steps are being taken over by intelligent logistics robots, such as automatic storage and retrieval machines and driverless transport systems. To work efficiently and reliably around the clock, these robots need flexible and particularly compact drive solutions.