Robotic Highway Safety Markers

The Robotic Highway Safety Markers system was developed by Shane Farritor a Professor at University of Nebraska-Lincoln. The Robotic Safety Barrel (RSB) replaces the heavy base of a typical safety barrel with a mobile robot. The mobile robot can transport the safety barrel and robots can work in teams to provide traffic control. Independent, autonomous barrel motion has several advantages.

First, the barrels can self-deploy, eliminating the dangerous task of manually placing barrels in busy traffic. To save costs, the robots work in teams. A more expensive "shepherd" robot with built-in Global Positioning System (GPS) navigation would position itself precisely, and then guide the placement of less expensive units, which measure out their positions based on wheel movement (a "dead reckoning" system). In tests, the robots were able to deploy themselves just about as well as humans could place them - their big wheels let them turn on a dime.

Comments (0)

This post does not have any comments. Be the first to leave a comment below.


Post A Comment

You must be logged in before you can post a comment. Login now.

Featured Product

The maxon IDX Compact Drive with Integrated Positioning Controller

The maxon IDX Compact Drive with Integrated Positioning Controller

The compact brushless EC-i motor combined with an EPOS4 positioning controller delivers a highly dynamic, powerful drive package with field-oriented control (FOC), high efficiency, and maintenance-free components in a high-quality industrial housing. The maxon IDX drives are suitable for use across the entire speed range (from standstill to maximum speed) and have an extremely high overload capability. Together with a positioning controller, the integrated sensor (single turn) enables absolute positioning.