Deep Learning for Detecting Robotic Grasps

From Ian Lenz, Honglak Lee, Ashutosh Saxena:

Abstract

We consider the problem of detecting robotic grasps in an RGB-D view of a scene containing objects. In this work, we apply a deep learning approach to solve this problem, which avoids time-consuming hand-design of features. This presents two main challenges. First, we need to evaluate a huge number of candidate grasps. In order to make detection fast and robust, we present a two-step cascaded system with two deep networks, where the top detections from the first are re-evaluated by the second. The first network has fewer features, is faster to run, and can effectively prune out unlikely candidate grasps. The second, with more features, is slower but has to run only on the top few detections. Second, we need to handle multimodal inputs effectively, for which we present a method that applies structured regularization on the weights based on multimodal group regularization. We show that our method improves performance on an RGBD robotic grasping dataset, and can be used to successfully execute grasps on two different robotic platforms... (homepage) (full pdf paper)

Comments (0)

This post does not have any comments. Be the first to leave a comment below.


Post A Comment

You must be logged in before you can post a comment. Login now.

Featured Product

The piCOBOT Electric vacuum generator

The piCOBOT Electric vacuum generator

Fully electric, slim design and absence of air-tubing and cabling. The new piCOBOT® Electric heads towards another success for Piab's piCOBOT® program. A secondary effect of these achievements is the absence of entangling air tubing and cabling. It simplifies the installation, and as the new piCOBOT® Electric only needs a single connection on the cobot arm, the clean set-up allows a completely unrestricted movement. The new piCOBOT® Electric package will contain plug & play software to fit UR e-series cobots, but many other useful adaptations will be introduced in the coming year