Engineers Devise New Method to Heighten Senses of Soft Robot

Written by AZoRobotics:  Most robots achieve grasping and tactile sensing through motorized means, which can be excessively bulky and rigid. A Cornell group has devised a way for a soft robot to feel its surroundings internally, in much the same way humans do.

A group led by Robert Shepherd, assistant professor of mechanical and aerospace engineering and principal investigator of Organic Robotics Lab, has published a paper describing how stretchable optical waveguides act as curvature, elongation and force sensors in a soft robotic hand.

Doctoral student Huichan Zhao is lead author of “Optoelectronically Innervated Soft Prosthetic Hand via Stretchable Optical Waveguides,” which is featured in the debut edition of Science Robotics. The paper published Dec. 6; also contributing were doctoral students Kevin O’Brien and Shuo Li, both of Shepherd’s lab.  Cont'd...

Comments (0)

This post does not have any comments. Be the first to leave a comment below.


Post A Comment

You must be logged in before you can post a comment. Login now.

Featured Product

The piCOBOT Electric vacuum generator

The piCOBOT Electric vacuum generator

Fully electric, slim design and absence of air-tubing and cabling. The new piCOBOT® Electric heads towards another success for Piab's piCOBOT® program. A secondary effect of these achievements is the absence of entangling air tubing and cabling. It simplifies the installation, and as the new piCOBOT® Electric only needs a single connection on the cobot arm, the clean set-up allows a completely unrestricted movement. The new piCOBOT® Electric package will contain plug & play software to fit UR e-series cobots, but many other useful adaptations will be introduced in the coming year