Self-folding electronics could enable advanced robotics

ACS Applied Materials & Interfaces:  As demand grows for more versatile, advanced robotics and other technologies, the need for components that can enable these applications also increases. Producing such components en masse has been a major challenge. But now, in ACS Applied Materials & Interfaces, researchers report that they have developed a way to help meet this need by printing electronics that can fold themselves into a desired shape. 

Creating small electronic pieces with specific architectural designs can now be accomplished with 3-D printing. But the process can be slow, relatively costly and can lead to structural flaws. So scientists have been working on methods to produce flat electronics that fold after they’re printed. But folding the devices into their desired shapes has required additional processing steps or specific conditions such as light exposure or dunking the pieces into liquids, which is not always a good option for electronic products. To address these limitations, Wojciech Matusik, Subramanian Sundaram and colleagues wanted to come up with a more practical approach.

The researchers formulated a new ink containing acrylate monomers and oligomers that can be cured with ultraviolet light. Energy is stored in specific regions of the printed part in the form of residual stress during the printing process. After the flat device is printed and removed from the printer platform, swelling forces cause it to fold itself into a predetermined shape without additional stimulus. The researchers say the development could have applications in robotics and human-machine interfaces.    Source:

Comments (0)

This post does not have any comments. Be the first to leave a comment below.


Post A Comment

You must be logged in before you can post a comment. Login now.

Featured Product

OnLogic Helix 401 Fanless Hybrid-Core Computer

OnLogic Helix 401 Fanless Hybrid-Core Computer

OnLogic's Helix 401 Compact Fanless Computer offers scalable, high-performance processing and can simultaneously drive multiple 4K displays, making it the ideal computing platform for many automation and IIoT applications. The Helix 401 has the horsepower to drive mission-critical applications while requiring less than 28W of power, and is small enough to fit in space-constrained locations or enclosures. It can be configured with a range of Intel® 12th generation processors, up to a Core i7 and has Intel Iris® Xe graphics onboard.