New technique eases production, customization of soft robotics

Scott Schrage, University of Nebraska-Lincoln via Phys.org:  By helping rubber and plastic stick together under pressure, University of Nebraska-Lincoln chemists have simplified the production of small fluid-carrying channels that can drive movement in soft robotics and enable chemical analyses on microscopic scales.

The technique, which creates a stronger chemical bond between silicone and an unprecedented array of plastics, could greatly reduce the time, complexity and expense needed to produce and customize the microfluidic devices.

"We're really excited, because we're providing a (technique) to successfully integrate different materials in a way that is streamlined and supports numerous practical applications," said Stephen Morin, assistant professor of chemistry. "We think that can really offer new opportunities to the community."

In demonstrating those opportunities, the team used a basic software program to design microfluidic networks and a standard laser printer to map those channels onto a transparent Mylar sheet. After exposing the plastic sheet to ultraviolet light and submerging it in a solution, the researchers laid the sheet atop a silicone film and applied heat.

The plastic and silicone bonded strongly—except where pathways had been marked by the printer's ink. When the team pumped air or liquid into those unbound sites, the fluids flowed through them at rates dictated by the pressure being applied—pressures several times higher than what previous bonding techniques have withstood.  Full Article:

Comments (0)

This post does not have any comments. Be the first to leave a comment below.


Post A Comment

You must be logged in before you can post a comment. Login now.

Featured Product

ATI Industrial Automation - MC-50 Manual Tool Changer

ATI Industrial Automation - MC-50 Manual Tool Changer

With intuitive and ergonomic lever operation, the patent-pending MC-50 Manual Robot Tool Changer provides a simple solution for quickly changing robotic end-of-arm tooling by hand. This compact and robust Tool Changer is designed for applications on collaborative robots that support payloads up to 25 kg and small industrial robots supporting payloads up to 10 kg. Featuring an ISO 50 mm mounting interface on the Master-side and Tool-side, the low-profile MC-50 mounts directly to most cobots and seamlessly integrates with many common cobot marketplace grippers and end-effectors.