Here comes the drone backlash

Mike Elgan for Computer World:  Consumer drone technology is barely taking off, and already a harsh public backlash is growing. Your typical garden variety consumer drone is lightweight, battery operated, has four propellers and is controlled by a smartphone. Most have cameras and beam back live video, which can be recorded for posterity. Some have high-quality HD cameras on them, and from that high vantage point can take stunning photos and videos. Drones are fun. They're exciting. They're accessible. But increasingly, they're becoming unacceptable. I'm sensing a growing backlash, a kind of social media pitchfork mob against drones and drone fans. It's only a matter of time, and not much time, before it will be politically incorrect to express any kind of enthusiasm for drones in polite company. I fear that many are about to embark on an "everybody knows drones are bad" mentality that will suppress the nascent industry and spoil this innovative and exhilarating technology. Here's what's driving the coming backlash:   Cont'd...

Autonomous Drifting

From AMREL: You know how the stuntmen make fast cars drift in action movies? Have you ever wanted to make a remote-controlled toy car drift like that? Of course you have.  If there ever were awards for endeavors that sound silly, but is actually technically interesting, then the folks at MIT’s Aerospace Controls Lab would surely be nominated. Unmanned systems are rarely fully autonomous.  Instead, researchers are pursuing “sliding” autonomy, i.e. an operator retains control, while some behaviors are made autonomous. Aerospace Controls Lab decided to teach a remote-control toy car how to autonomously drift. They started by running their learning algorithm through simulations.  Information from these simulations was transferred to performance modifiers. When the car was run through its drifting actions in reality, the algorithm was constantly modified. The result is a car that can maintain drifting in a full circle even when salt is added to the floor, or another vehicle interferes with it.  

Service Robots are Thriving in Japan

This Article contains the interview of Japan Robot Association`s Administration Department General Manager Mr. Shigeaki Yanai.

Can a Robot be a Pet?

The negatives of having a live pet could drive more people to selecting a robotic pet. In the end, it will be a personal choice.

Humanoid robot negotiates outdoor, rough terrain with ease

Boston Dynamics have developed the "Atlas" robot a highly mobility, humanoid robot designed to negotiate outdoor, rough terrain.  Here is a video showing "Atlas" courtesy euronews.

Breaking down the robot-factory language barrier

In most industrial settings, robots speak one language and the plants within which they work speak another.

Next Generation Drone Solutions: The Internet of Flying Things™

A key problem preventing the development of the drone industry at the moment is that most drones cannot currently detect each other or obstacles they may face during flight.

Gecko-inspired technology for 'climbing' space robots

MIT researchers have designed a human-machine interface that allows an exoskeleton-wearing human operator to control the movements and balance of a bipedal robot. The technology could allow robots to be deployed to a disaster site, where the robot would explore the area, guided by a human operator from a remote location. "We'd eventually have someone wearing a full-body suit and goggles, so he can feel and see everything the robot does, and vice versa," said PhD student Joao Ramos of Massachusetts Institute of Technology's Department of Mechanical Engineering. "We plan to have the robot walk as a quadruped, then stand up on two feet to do difficult manipulation tasks such as open a door or clear an obstacle," Ramos said.   Cont'd...

Auro Robotics: Driverless Shuttles for In-campus Travel

From Techcrunch: Y Combinator-backed Auro Robotics is currently testing their driverless shuttle system at several universities, and is actually beginning to deploy shuttles on the campus of Santa Clara University. The company is also planning to expand to other markets like amusement parks, retirement communities and small islands, with some projects in those spaces already set to take off “in the later part of this year.” Auro has chosen to focus on these small, contained environments largely because they are controlled by private corporations, and thus are not subject to the heavy government regulation that Google and other companies are stuck behind with their driverless cars... ( full article ) From Auro Robotics: How does it work Auro Prime uses latest technology to ensure safe navigation even on busy roads. The vehicle is equipped with Lasers, camera, Radar and GPS providing it complete 360 degree vision under all environment situations. The shuttles relies on a prior 3D map of the environment, which is created once in the lifetime at the beginning. In all subsequent runs, it uses this 3D map to localise itself and interpret road topography. Passengers can input their destinations through a simple to use touch screen mounted on the vehicle, or through their mobile app. The underlying software automatically figures out the optimum high-level route to reach safely to the destination... ( more info )    

The Exploding Use of Robotics in Logistics and Manufacturing

The future of robotics contains the same level of certainty as the suns rising in the morning. Robots are becoming an integrated portion of the workforce, and they will be there every day thereafter, unless a company ditches robotics altogether.

Carnegie Mellon, GE Ventures bringing robotics accelerator program to Pittsburgh

By Deborah M. Todd / Pittsburgh Post-Gazette:  A new accelerator program and a $20 million venture fund started by Carnegie Mellon University and GE Ventures could brand Pittsburgh as the official home of the globe’s growing robotics industry. CMU’s National Robotics Engineering Center and GE Ventures, the investment arm of Fairfield, Conn.-based General Electric, have teamed up to create The Robotics Hub, an early-stage startup accelerator program designed to draw the nation’s best advanced robotics firms to Pittsburgh and to keep those started here firmly in place. The for-profit Robotics Hub will provide funding through newly created Coal Hill Ventures and access to equipment at CMU and the NREC to chosen companies by 2016, in addition to putting their creations on a fast track toward commercialization. “The strategy that’s most important to GE is to really get behind startups and help them scale. A lot of companies can come with the money, but what we bring is the ability to scale and the opportunity to commercialize quite quickly, said Alex Tepper, GE Ventures managing director.   Cont'd...

Researching your first robot purchase? Don't be intimidated.

If youre considering a robot, you probably have a good sense of the process that youd like to automate. With that information, an integrator can get the process started, determining the clients needs and the best type of robot for the job.

Robotics firm GreyOrange raises $30 million, to expand overseas

GreyOrange, a robotics firm that is in the business of automating warehouses, has raised $30 million (Rs 191.6 crore) in a round led by Tiger Global Management, with participation from existing investors Blume Ventures. The funding, which the company says is one of the largest for robotics company globally, will be used to invest in developing new products, expand internationally into Asia Pacific, Middle East and Europe. The company says it has a 90% market share of India's warehouse automation market and it powers over 180,000 square feet of warehouse. "We are doubling our team size globally as we steer the company and our products beyond India and into international markets," said co-founder and CEO Samay Kohli, who founded the company with Akash Gupta in 2011. The company has two products: The Sorter and the Butler. The former is a high-speed system that consolidates orders and routes parcels. By Diwali, the company will have installed sortation capacity of 3 million parcels per day. The second product, the Butler, is an order-picking system that is tailored for high-volume, high-mix orders characteristic of e-commerce and omni-channel logistics fulfilment.   Cont'd..  

Giving robots a more nimble grasp

Engineers use the environment to give simple robotic grippers more dexterity. Engineers at MIT have now hit upon a way to impart more dexterity to simple robotic grippers: using the environment as a helping hand. The team, led by Alberto Rodriguez, an assistant professor of mechanical engineering, and graduate student Nikhil Chavan-Dafle, has developed a model that predicts the force with which a robotic gripper needs to push against various fixtures in the environment in order to adjust its grasp on an object.

Robo-Sabotage Is Surprisingly Common

By Matt Beane for MIT Technology Review:  I think perhaps there’s something else at work here. Beyond building robots to increase productivity and do dangerous, dehumanizing tasks, we have made the technology into a potent symbol of sweeping change in the labor market, increased inequality, and recently the displacement of workers. If we replace the word “robot” with “machine,” this has happened in cycles extending well back through the Industrial Revolution. Holders of capital invest in machinery to increase production because they get a better return, and then many people, including some journalists, academics, and workers cry foul, pointing to the machinery as destroying jobs. Amidst the uproar, eventually there are a few reports of people angrily breaking the machines. Two years ago, I did an observational study of semiautonomous mobile delivery robots at three different hospitals. I went in looking for how using the robots changed the way work got done, but I found out that beyond increasing productivity through delivery work, the robots were kept around as a symbol of how progressive the hospitals were, and that when people who’d been doing similar delivery jobs at the hospitals quit, their positions weren’t filled.   Cont'd...

Records 2641 to 2655 of 3480

First | Previous | Next | Last

Featured Product

DualMove Pallet System Utilizes Timing Belt for Precise Robotic Integration

DualMove Pallet System Utilizes Timing Belt for Precise Robotic Integration

Our highly advanced DualMove Pallet System for assembly automation is ideal for increasing the efficiency, generation, and precision of pallet traffic. Additionally, it reduces downtime costs that could disrupt production. DualMove is designed to work with the precision timing that robotic integration requires to be successful.