Reviving Japan's Dairy Industry, One Milking Robot at a Time

Aya Takada for Bloomberg:  Jin Kawaguchiya gave up a career in finance to help revive Japan’s ailing dairy industry -- one robot at a time. In a country that relies increasingly on imported foods like cheese and butter, Japan’s milk output tumbled over two decades, touching a 30-year low in 2014. Costs rose faster than prices as the economy stagnated, eroding profit, and aging farmers quit the business because they couldn’t find enough young people willing to take on the hard labor of tending to cows every day. But technology is altering that dynamic. On the northern island of Hokkaido, Japan’s top dairy-producing region, Kawaguchiya transformed the 20-cow farm he inherited from his father-in-law 16 years ago into Asia’s largest automated milking factory. Robots extract the white fluid from 360 cows three times a day and make sure the animals are fed and healthy. The machines even gather up poop and deposits it in a furnace that generates electricity.   Cont'd...

Discrete Manufacturers: Special Considerations for Robotics and Demand-Driven Supply Chain Solutions

Misalignment with suppliers is often caused by existing replenishment policies such as min/max order policy.

Could the future of pizza be in the hands of robots?

CARTER EVANS for CBS:   In this emerging age of drone deliveries, anddriverless cars​, technology now brings us -- robo-pizza.  Silicon Valley is at the forefront of reinventing the pie. The kitchen at Zume Pizza is where technology and culinary arts collide. Humans and robots work side-by-side at Zume Pizza in Mountain View, California. Veteran restaurateur Julia Collins founded the delivery-only pizza company with Alex Garden, the former president of online gaming company, Zynga. “I saw an opportunity to go after the $40 billion domestic delivery pizza market,” Garden said.   Cont'd...

Deep-Diving Robots Zap, Kill Invasive Lionfish

Mindy Weisberger for Live Science:  The robotics company iRobot, known for creating the autonomous and endearing Roomba vacuums, is taking steps to make a clean sweep of lionfish in the coastal waters of the Atlantic Ocean, with a robot designed to target and dispatch the invasive fish. A diving robot will enable individuals on the ocean surface to remotely zap and kill lionfish with electrical charges. The effort is meant to help curb the fast-growing populations of these voracious predators, which are recognized by environmental officials as a serious threat to marine ecosystems in the western Atlantic. The initiative to launch the lionfish-targeting robot is called Robots in Service of the Environment (RISE) and represents an iRobot partnership with organizations and volunteer experts in the fields of robotics, engineering and conservation.   Cont'd...

IMTS 2016 - Takeaways

Many of the OEMs were showing how their smart products and processes were driving new business models like servitization (manufacturing firms developing the capabilities to provide services and solutions that supplement their traditional product offerings) and new "power-by-the-hour" offerings.

Autonomous mobile robots can accomplish a variety of tasks.

Bob Violino for ZDNet:  Autonomous robots can perform actions or complete tasks with a high degree of autonomy, which makes them ideal for applications such as space exploration or cleaning your living room carpet. Mobile robots are capable of moving from place to place. Put these capabilities together and you got a powerful machine that can handle lots of tasks in industrial environments such as factories, as well as in hospitals, hotels, and other areas. And, in fact, one of the more prominent trends in robotics today is the growing popularity of autonomous mobile robots (AMRs), with new vendors jumping into the market and sales on the rise. AMRs are modular, self-driving mobile robots that can be used for a variety of business applications, such as locomotion, mapping, navigation, and inspection.   Cont'd...

Robot Sews First Complete Garment

From Sewbo:   Sewbo Inc. on Thursday announced that it has achieved the long-sought goal of automated sewing, by using an industrial robot to sew together a T-shirt. This milestone represents the first time that a robot has been used to sew an entire article of clothing. Despite widespread use in other industries, automation has failed to find a place in apparel manufacturing due to robots’ inability to handle limp, flexible fabrics. Sewbo avoids these hurdles by temporarily stiffening fabrics, making it easy for conventional robots to build clothes as if they were made from sheet metal. Afterwards, the process is reversed to produce soft, fully assembled garments. “Our technology will allow manufacturers to create higher-quality clothing at lower costs in less time than ever before,” said Jonathan Zornow, the technology’s inventor. “Avoiding labor issues and shortening supply chains will help reduce the complexity and headaches surrounding today’s intricate global supply network. And digital manufacturing will revolutionize fashion, even down to how we buy our clothes by allowing easy and affordable customization for everyone.” Sewbo performed their feat using an off-the-shelf industrial robot, which they taught to operate a consumer sewing machine. Having successfully proved its core concept, Sewbo is now expanding its team and working towards commercializing its technology... ( company webpage , MIT article )

Robodex Ghost Robotics™ Launches Ghost Minitaur™ Direct-Drive Legged Robot Platform

Ghost Minitaur™ is a patent-pending medium-sized legged robot highly adept at perceiving tactile sensations. Its high torque motors, motor controllers, and specialized leg design allow this machine to run and jump over difficult terrain while actively balancing, climb fences, and rapidly reorient from falls. High-speed and high-resolution encoders let the robot see and feel the ground through the motors and adapt faster than the blink of an eye.  Full Press Release:

Crowdfunding Projects For October

The Hobby Hand, Hobby Hand and two other wacky crowdfunding projects. Sit back and watch the videos.

Ford, U-M Accelerate Autonomous Vehicle Research with Ford Researchers In-House at New Robotics Lab on U-M Campus

Ford and the University of Michigan today announce they are teaming up to accelerate autonomous vehicle research and development with a first-ever arrangement that embeds Ford researchers and engineers into a new state-of-the-art robotics laboratory on U-M's Ann Arbor campus.  While the new robotics laboratory opens in 2020, by the end of this year Ford will move a dozen researchers into the North Campus Research Complex (NCRC).  The announcement is the latest in a series of actions by Ford as it moves toward having fully autonomous SAE-defined level 4-capable vehicles available for high-volume commercial use in 2021. Autonomous vehicles are part of Ford's expansion to be an auto and a mobility company.    Full Press Release:  

Big Picture Processes Impact Efficient Lineside Delivery

The self-driving vehicle (SDV) using an autonomous guidance system breaks free of magnetic strips and pre-programmed routes.

Canada Is Using Lasers and Robots to Study a Mysterious Curling 'Frankenbroom'

From Martin Smith at Vice:   Inside a slightly shabby building on the outskirts of of Kemptville, near Ottawa, the World Curling Federation (WCF) has gathered a world-class team of scientists and premier curling talent to unravel a scientific mystery that is rattling the foundations of curling. At stake is nothing less than the future of one of the world’s oldest team sports. The aim of the tests at the so-called World Sweeping Summit, which runs from Wednesday to Friday, is to understand how controversial new brush heads—some have dubbed them ‘Frankenbrooms’—and new sweeping techniques are able to manipulate the trajectory of curling stones in radically unprecedented ways... (full story)   (supplemental video related to the "great" curling stone controversy of 1870)

A.I. and robotics could replace 6% of U.S. jobs by 2021

Sharon Gaudin  for ComputerWorld:  In just five years, intelligent systems and robots may have taken up to 6% of U.S. jobs, according to Forrester Research in a report released this week. As artificial intelligence (A.I.) advances to better understand human behavior and make decisions on its own in complicated situations, it will enable smart software and robots to take on increasingly challenging jobs.  That means robotics should be able to take over some jobs traditionally held by humans by 2021. For instance, Forrester predicts that smart systems like autonomous robots, digital assistants, A.I. software and chatbots will take over customer service rep jobs and eventually even serve as truck and taxi drivers.   Cont'd...

Robophysics: Robots in Motion

Researchers are investigating the core fundamentals of locomotion as it exists in nature and as it applies to the movement of robotic systems. Great strides have been made in giving motion to robots, but we have a long way to go to have robots duplicate biological life.

Safety solutions for intelligent human-robot collaboration

Fanny Platbrood for SafeToWork:  Human-robot collaboration (HRC) describes a work scenario in which humans and automated machines share and work in the same workspace at the same time. Driven by Industry 4.0, this model of collaboration promises highly flexible workflows, maximum system throughput and productivity, as well as economic efficiency. However, ensuring that HRC is actually able to live up to this promise requires exactly the right safety technology for the application in question. One of the major issues associated with Industry 4.0 is making work processes flexible. At the extreme end of the spectrum, this may involve manufacturing products in batch size 1 under industrial mass-production conditions – that is, manufacturing unique items on a conveyor belt.   Cont'd...

Records 2281 to 2295 of 3479

First | Previous | Next | Last

Featured Product

OnLogic Helix 511 Fanless Intel 12th Gen Edge Computer

OnLogic Helix 511 Fanless Intel 12th Gen Edge Computer

OnLogic's Helix 511 Fanless Edge computer delivers ultra-reliable, fanless computing using Intel® 12th Generation performance hybrid processing. The Helix 511 is a versatile fanless computer capable of powering solutions including advanced automation, light detection and ranging (LiDAR), access control & building automation, or virtually any other IoT or edge gateway functionality needed, with support for 4 simultaneous serial connections. The system is able to reliably operate in temperatures ranging from 0 to 50°C, can accept power input ranging from 12 to 24 Volts, and is Wall, VESA and DIN rail mountable.